OSD

Commonwealth of Australia

COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANIZATION

Reprinted from THE JOURNAL OF CHEMICAL PHYSICS, Vol. 20, No. 6, 969-972, June, 1952 Printed in U. S. A.

The Dielectric Properties of Compressed Fluoromethane

H. G. DAVID, S. D. HAMANN, AND J. F. PEARSE

Commonwealth Scientific and Industrial Research Organization, Division of Industrial Chemistry, High Pressure Laboratory,

Chemical Engineering Department, University of Sydney, Sydney, Australia

(Received January 22, 1952)

The dielectric constant, dielectric loss, and density of compressed fluoromethane have been measured at 50°C and 75°C in the pressure range 20 to 160 atmospheres. The ratio $(\epsilon - 1)/d(\epsilon + 2)$ shows a large and regular decrease as the density increases. The

INTRODUCTION

HERE is considerable information¹ on the dielectric properties of polar liquids and of their vapors at atmospheric pressure. Behavior in the range of densities between these two states is of great interest and can be observed by the study of compressed gases. It appears, however, that the only polar gas for which such measurements have been made is ammonia, as reported by Keyes and Oncley.²

This paper reports measurements on fluoromethane, which was chosen for its conveniently low critical temperature, 44.55°C,3 its high dipole moment, 1.81×10^{-18} esu,⁴ and its lack of reactivity.

EXPERIMENTAL

CH₃F was prepared by heating an equimolecular mixture of sodium methyl sulfate and sodium fluoride to 250°C.5,6

The gases evolved were passed through two wash bottles containing conc. H₂SO₄ and two containing 40 percent NaOH solution to remove the byproducts of the reaction, (CH₃)₂O, HF, SO₂, and SiF₄. The CH₃F was dried by magnesium perchlorate, led at atmospheric pressure through a dry ice and alcohol trap, finally condensed on a liquid air trap and permanent gases were pumped off. It was then fractionally distilled and stored in the manner previously described for ethylene.⁷

The vapor pressure of a sample of the fluoromethane at dry ice temperature agreed with that of a sample prepared by the decomposition of tetramethylammonium fluoride.8

Capacity and Density Measurements

Simultaneous measurements of pressure (P) and capacity were made in the manner previously reported for ethylene.⁷ Since no P-V-T data were available for

- ² F. G. Keyes and J. L. Oncley, Chem. Revs. **19**, 195 (1936). ³ W. Cawood and H. S. Patterson, J. Chem. Soc. 2180 (1932).
- ⁴C. P. Smyth and K. B. McAlpine, J. Chem. Phys. 2, 499 (1934).
- ⁵ J. Dumas and E. Péligot, Ann. chim. et phys. (2) 61, 193 (1836).
- 6 E. Moles and T. Batuecas, J. de Chim. Phys. 17, 35 (1919). 7 H. G. David, S. D. Hamann and J. F. Pearse, J. Chem. Phys. 19, 1491 (1951),

theories of Debye, Onsager, and Kirkwood have been applied to the results. Evidence of the restriction of molecular rotation at high densities is adduced.

fluoromethane, measurements of the density (d) were made by the constant volume method. (Holborn⁹ and Bartlett¹⁰). A 2-cc high pressure gas pipette was connected to the gas condenser and pressure balance through a needle valve. When capacity and pressure measurements were completed the valve was closed, this action causing a negligible pressure change in the system. The quantity of gas thus enclosed in the pipette was later determined by expanding it to atmospheric pressure in a 1-liter gas burette. Pressure in the burette was measured by a mercury manometer. The pipette and burette were mounted in the same thermostat as the condenser.

Dielectric Loss Measurement

During the course of the capacity measurements it was found that the minimum anode current in the Henriquez oscillator¹¹ increased with increasing density. This implied¹² that a power loss was occurring in the gas condenser. To measure the loss the gas condenser was replaced by an equal low loss capacitor and variable series resistor. The resistor was adjusted until the same minimum anode current was obtained. From the values of resistance and capacitance the power factor could be estimated.

At densities greater than the critical, the power loss in the gas condenser was found to cause an error in the capacity as measured, owing to the change in the characteristics of the measuring circuit. A series of measurements of the magnitude of this error at various densities was made at the same time as the power loss measurements. From a smooth curve drawn through these points a correction was applied to the dielectric constant results. The correction amounted to about $1\frac{1}{2}$ percent in the factor $(\epsilon - 1)/d(\epsilon + 2)$ at the highest densities.

RESULTS

Dielectric Constant and Density

The results are shown in Tables I and II. In the calculation of densities from the gas burette measure-

⁹ L. Holborn and H. Schultze, Ann. Physik (4) 47, 1089 (1915).

OCT 6 1966

¹ A General Discussion on Dipole Moments, Trans. Faraday Soc. 30, 677 (1934).

⁸ S. D. Hamann and J. F. Pearse, Trans. Faraday Soc. (to be published).

E. P. Bartlett, J. Am. Chem. Soc. 49, 687 (1927).
P. Cohen Henriquez, Physica 2, 429 (1935).
J. Reilly and W. N. Rae, Physico-Chemical Methods (D. Van Nostrand Company, Inc., New York, 1939), Vol. II, p. 513.

8391.3

fluoromethane at 50.00°C.

		and the second second	and the second second	
P (Int. ats.)	e	d (moles/liter)	$(\epsilon - 1)/d(\epsilon + 2)$ (cc/mole)	PV/RTª
21.706	1 2176	0.960	70.4	0.853
20 010	1 3330	1 433	69.7	0.787
36 512	1 4477	1.879	69.1	0.733
41 373	1 5512	2 265	68.5	0.689
45 463	1 6572	2 646	67.9	0.648
49 400	1.7834	3.084	67.1	0.604
53.068	1 9313	3 570	66.4	0.561
55 683	2 0669	3 997	65.6	0.525
57 970	2 2206	4 474	64.6	0.4887
60.819	2 4956	5.29	62.9	0.4337
63 530	2.979	6.60	60.2	0.3628
63 630	3 001	6.65	60.1	0.3606
64 799	3.420	7.69	58.1	0.3178
64 721	3 414	7 70	57.9	0.3170
65 468	3.811	(8.67)b	(55.8)	(0.2849)
65 541	3.828	8.68	55.9	0.2848
65.826	4.019	9.24	54.3	0.2686
65 962	4 123	9.51	53.6	0.2616
66.190	4.210	9.69	53.4	0.2577
66 636	4 496	10.28	52.4	0.2445
67.287	4.726	10.79	51.4	0.2353
68.670	5.143	11.68	49.67	0.2218
69.052	5.214	11.78	49.57	0.2210
70.948	5.541	12.40	48.55	0.2157
71 724	5.659	12.68	47.99	0.2134
73 480	5.843	12.97	47.62	0.2137
74 993	5.992	13.29	47.00	0.2128
77.205	6.163	13.55	46.67	0.2149
79.830	6.340	13.90	46.08	0.2167
81,402	6.422	14.02	45.91	0.2189
118.25°	and the states in the states in	16.05	and a stand	0.2779
160.42°		17.14		0.3531
		Contraction for		

• Calculated as P/dRT using R = 82.053 cc atmos/mole as given by J. A. Beattie in *Temperature* (Reinhold Publishing Corporation, New York,

1941), p. 87. ^b This density was found by interpolation in the d/P data. ^e The capacities here were beyond the range of the apparatus.

ments the variation of PV with P was allowed for. The values of the second virial coefficient B(T) used in doing this were taken from earlier low pressure measurements made in this laboratory.8 The figures were

B(323.16) = -171 cc/mole,

$$B(348.10) = -141 \text{ cc/mole.}$$

TABLE II. Dielectric constant and density of fluoromethane at 75.00°C.

P (Int. ats.)	Date as the	d (moles/liter)	$(\epsilon -1)/d(\epsilon +2)$ (cc/mole)	PV/RT
28.885	1.2552	1.190	65.9	0.850
39.664	1.3902	1.762	65.3	0.788
54.288	1.6359	2.724	64.2	0.698
63.930	1.8611	3.535	63.1	0.633
71.993	2.1143	4.396	61.6	0.573
77.687	2.3463	5.15	60.1	0.528
78.556	2.3865	5.25	60.2	0.524
81.365	2.5289	5.68	59.4	0.501
85.623	2.7732	6.44	57.7	0.4657
90.681	3.1138	7.41	55.8	0.4286
93.086	3.303	7.88	55.1	0.4136
98.526	3.736	8.98	53.1	0.3840
102.92	4.061	9.79	51.6	0.3680
107.80	4.390	10.60	50.0	0.3560
115.10	4.809	11.58	48.32	0.3480
122.68	5.141	12.37	46.88	0.3471
133.63	5.530	13.22	45.51	0.3539
147.73	5.920	14.00	44.38	0.3695

Included in the tables are the values of PV/RT for the various densities. The variation of this factor with pressure is shown in Fig. (1), which illustrates the relation of the region studied to the critical point. For each temperature the values of PV corresponding to the seven lowest densities were fitted to a curve of the form

$$PV = RT + a(T)d + b(T)d^2 + c(T)d^3$$

by the method of least squares. The second virial coefficient was calculated from the relationship B(T)=a(T)/RT. The following values were obtained:

$$B(323.16) = -168 \text{ cc/mole},$$

 $B(348.16) = -140 \text{ cc/mole}.$

These are in good agreement with the low pressure values quoted above.

The difference between the density of the gas in the high pressure pipette and that in the gas condenser, due

FIG. 1. Isotherms for fluoromethane.

to the head of gas between them, was calculated to be never greater than 0.01 percent and was therefore neglected.

Dielectric Loss

The variation of the tangent of the loss angle δ with density is shown in Table III and in Fig. (2). It must be emphasized that these measurements were made by an extempore method and the results can only be regarded as approximate. They are, however, of considerable interest qualitatively. The power loss is zero until the critical density is approached and then increases rapidly with increasing density, the rate of increase being more pronounced at 50°C than at 75°C $(T_c = 44.55^{\circ}C).$

APPARENT DIPOLE MOMENT

The most extensively applied theories of polarization in dipolar media are those of Debye and Onsager. Both

TABLE I. Dielectric constant and density of

theories are approximate and a discussion of their relative merits is found in the Faraday Society's "General Discussion on Dielectrics."13 If the molecular dipole moment were constant, Debye's theory would require that the Clausius-Mosotti function $(\epsilon - 1)/$ $d(\epsilon+2)$ be independent of density at a given temperature. Tables I and II show that there is a large decrease in the C-M ratio for CH₃F with increasing density. It is noteworthy that Keyes and Oncley² report an increase in this ratio for NH₃. Onsager's theory would require the function $(\epsilon - n^2)(2\epsilon + n^2)/\epsilon d(n^2 + 2)^2$ to be similarly independent of density (here n is the refractive index). For the present case this function increases by 7 percent. These effects might arise either from the inadequacy of the theories or from changes in the dipole moment of CH₃F with density.

There is no reason to suppose that the dipole moment, μ , of a CH₃F molecule in the compressed gas is the same as that of an isolated molecule since a variation of μ with density might easily occur if the molecules were

TABLE III.	Dielectric	absorption	in	fluoromethane
	at 1	megacycle.		

50	0°C	75	°C
(moles/l)	tanð	(moles/l)	tanð
<6.6	0.00000	< 6.9	0.00000
7.03	0.00022	7.70	0.00009
7.40	0.00046	8.38	0.00030
7.94	0.00128	9.05	0.00072
8.43	0.00176	9.67	0.00164
8.93	0.00227	10.30	0.00312
9.50	0.00330	10.87	0.00504
10.06	0.00444	11.42	0.00787
10.58	0.00518	11.94	0.01022
11.03	0.00669		
11.51	0.00935	100	

 $^{^{\}rm a}$ Measurements to 5 megacycles showed an increase in the absorption with frequency in this range.

distorted by the intermolecular forces. In this respect the apparent dipole moments calculated from the Debye and Onsager theories and given in Table IV are of interest. The change in the Debye values is larger than would be expected from considerations of the magnitude of the intermolecular forces in the pressure range studied. Onsager's model leads to a smaller apparent change in μ and appears to be the more satisfactory in the present case.

If it were possible to calculate the distribution function for compressed CH₃F, Kirkwood's precise treatment^{13, 14} of polar fluids could be applied to the experimental data to find the real change in μ . This calculation is unfortunately exceedingly difficult. In the next section the theory is used in the opposite way, assuming μ to be constant, to find the change in Kirkwood's correlation parameter, g.

FIG. 2. Dielectric loss and correlation parameter for fluoromethane.

RESTRICTED ROTATION NEAR THE CRITICAL POINT

In an earlier note¹⁵ the sudden development of the dielectric loss near the critical density of CH₃F was taken as evidence of a fairly sharp transition between free and restricted rotation of the dipolar molecules. Some further evidence of this is found in the change of ϵ with density. Kirkwood,^{13,14} allowing for the effects of hindered rotation on the dielectric constant, obtained the expression

$$(2\epsilon+1)(\epsilon-1)/9\epsilon d = {}_DP + 4\pi N_0 g\mu^2/9kT,$$

where $_{D}P$ is the molar distortion polarization, N_{0} is Avogadro's number, and μ is the dipole moment of an isolated molecule. The correlation parameter g can be related to the forces restricting the rotation of the molecules. Its divergence from unity is a measure of the extent of the restriction.

Figure (2) shows g as a function of density and temperature. It was calculated on the assumption that μ is

TABLE IV. Apparent dipole moment of fluoromethane.

$50^{\circ}C$			d	$75^{\circ}C$ $\mu_{A=-}(esu \times 10^{-18})^{a}$	
(moles/l)	Debye	Onsager ^b	(moles/l)	Debye	Onsagerb
0.960	1.806	1.813	1.190	1.804	1.813
3.570	1.745	1.819	3.535	1.759	1.825
7.69	1.615	1.857	6.44	1.670	1.838
10.28	1.517	1.859	9.79	1.562	1.863
12.40	1.449	1.876	11.58	1.500	1.865
14.02	1.400	1.889	14.00	1.423	1.869

^a Smyth and McAlpine's figure (see reference 4) for the distortion polarization $_{D}P = 8.95$ cc/mole was used in calculating μ_{App} . ^b An "effective" refractive index *n* was calculated from the relationship $(n^2-1)/d(n^2+2) = _{D}P$.

¹⁵ David, Hamann, and Pearse (to be published).

¹³ "General Discussion on Dielectrics," Trans. Faraday Soc. 42A (1946).

¹⁴ J. G. Kirkwood, J. Chem. Phys. 7, 911 (1939).

constant. Smyth and McAlpine's⁴ value of $\mu = 1.81 \times 10^{-18}$ esu was used. The curves for both g and tan δ show that the molecules lose their freedom of rotation at high densities. In addition, the 50°C curves have shoulders near the critical density, d_c , suggestive of a fairly sudden loss of some of the rotational freedom as d_c is approached. To confirm the existence of the comparatively low shoulder on the g curve some further

measurements were made several weeks after the original series. These gave results in complete agreement with the earlier ones.

The authors wish to thank Professor R. J. W. Le Fèvre for suggestions leading to this investigation and for some helpful discussions.

The advice and assistance of Dr. J. S. Dryden in the dielectric absorption measurements were of great value.

THERE, DATIVITIES ARE SLAVE FOR ATOS OFFICIALS

It's superfire addre the sud-fan the addrenen of flue dirivente too, as as the episical density of eVLC car, taken as are increased on fails, along transition between free and ristic induction of the diroches molecules, some lightlice and the efficiency of the diroches of a the direction of the information of the dirac of histories in the information of the direction of histories of a direction of the information of the biological of the information of the direction of the manual of the information of the direction of the manual of the information of the direction of the manual of the information of the direction of the manual of the information of the direction of the direction of the manual of the direction o

The Part of the - hard (1 - add + at)

where at is the books ministrice polytication is a structure contact and a level office partners of an isolated and only. It e wateringthe malanet random is milited to the harm maladeling the partners of the malanets its theater near from and r is a presence of the caterial of the restriction.

 Printee (1) are any more fore than the matrices of perturber. It was relationed on the list interprise they are

O.more			
ALC:			
			the st Aughter

(2) A set of the final state of the intervention in the fill of the set of

White Romann, and Perry to be relighted.